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Computing Semantic Similarity

• Fundamental to almost all NLP tasks, e.g.,
• Machine translation: similarity between sentences in different languages

• Web search: similarity between queries and documents

• Problems of the existing approaches
• Lexical matching cannot handle language discrepancy.

• Unsupervised word embedding or topic models are not optimal for the task of 
interest.



Deep Semantic Similarity Model (DSSM)

• Semantic: map texts to real-valued vectors in a latent semantic space 
that is language independent

• Deep: the mapping is performed via deep neural network models that 
are optimized using a task-specific objective

• State-of-the-art results in many NLP tasks (e.g., Shen et al. 2014; Gao 
et al. 2014, Yih et al. 2014)

• This paper: DSSM to model interestingness for recommendation –
What interests a user when she is reading a doc?
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Two Tasks of Modeling Interestingness

• Automatic highlighting
• Highlight the key phrases which represent the entities (person/loc/org) that 

interest a user when reading a document

• Doc semantics influences what is perceived as interesting to the user

• e.g., article about movie  articles about an actor/character

• Contextual entity search
• Given the highlighted key phrases, recommend new, interesting documents 

by searching the Web for supplementary information about the entities

• A key phrase may refer to different entities; need to use the contextual 
information to disambiguate
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DSSM for Modeling Interestingness
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Contextual entity search Key phrase and context Entity and its corresponding (wiki) page
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DSSM: Compute Similarity in Semantic Space

Learning: maximize the similarity 
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Representation: use DNN to extract 
abstract semantic representations

Convolutional and Max-pooling layer:
identify key words/concepts in X and Y

Word hashing: use sub-word unit (e.g., 
letter 𝑛-gram) as raw input to handle 
very large vocabulary



Letter-trigram Representation

• Control the dimensionality of the input space
• e.g.,  cat → #cat# → #-c-a, c-a-t, a-t-#

• Only ~50K letter-trigrams in English; no OOV issue

• Capture sub-word semantics (e.g., prefix & suffix)

• Words with small typos have similar raw representations

• Collision: different words with same letter-trigram representation?

Vocabulary size # of unique letter-trigrams # of Collisions Collision rate

40K 10,306 2 0.0050%
500K 30,621 22 0.0044%
5M 49,292 179 0.0036%
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• Extract local features using convolutional layer
• {w1, w2, w3}  topic 1

• {w2, w3, w4}  topic 4



Max-pooling Layer
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Learning DSSM from Labeled X-Y Pairs

• Consider a doc 𝑋 and two key phrases 𝑌+ and 𝑌−

• Assume 𝑌+ is more interesting than 𝑌− to a user when reading 𝑋

• sim𝛉 𝑋, 𝑌 is the cosine similarity of 𝑋 and 𝑌 in semantic space, 
mapped by DSSM parameterized by 𝛉
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• Consider a doc 𝑋 and two key phrases 𝑌+ and 𝑌−

• Assume 𝑌+ is more interesting than 𝑌− to a user when reading 𝑋

• sim𝛉 𝑋, 𝑌 is the cosine similarity of 𝑋 and 𝑌 in semantic space, 
mapped by DSSM parameterized by 𝛉

• Δ = sim𝛉 𝑋, 𝑌+ − sim𝛉 𝑋, 𝑌−

• We want to maximize Δ

• 𝐿𝑜𝑠𝑠 Δ; 𝛉 = log(1 + exp −𝛾Δ )

• Optimize 𝛉 using mini-batch SGD on GPU 0

5

10

15

20

-2 -1 0 1 2



Outline

• Introduction

• Tasks of modeling Interestingness

• A Deep Semantic Similarity Model (DSSM)

• Experiments – Two Tasks of Modeling Interestingness
• Data & Evaluation

• Results

• Conclusions



Extract Labeled Pairs from Web Browsing Logs
Automatic Highlighting

• When reading a page 𝑃, the user clicks a hyperlink 𝐻

…

I spent a lot of time finding music that was motivating and 

that I'd also want to listen to through my phone. I could 

find none. None! I wound up downloading three Metallica 

songs, a Judas Priest song and one from Bush.
…

http://runningmoron.blogspot.in/

• (text in 𝑃, anchor text of 𝐻)

𝑃

𝐻

http://judaspriest.com/
http://en.wikipedia.org/wiki/Bush_(band)


Extract Labeled Pairs from Web Browsing Logs
Contextual Entity Search

• When a hyperlink 𝐻 points to a Wikipedia 𝑃′

…

I spent a lot of time finding music that was motivating and 

that I'd also want to listen to through my phone. I could 

find none. None! I wound up downloading three Metallica 

songs, a Judas Priest song and one from Bush.
…

http://runningmoron.blogspot.in/

• (anchor text of 𝐻 & surrounding words, text in 𝑃′)

http://en.wikipedia.org/wiki/Bush_(band)

http://judaspriest.com/
http://en.wikipedia.org/wiki/Bush_(band)


Automatic Highlighting: Settings

• Simulation
• Use a set of anchors as candidate key phrases to be highlighted

• Gold standard rank of key phrases – determined by # user clicks

• Model picks top-𝑘 keywords from the candidates

• Evaluation metric: NDCG

• Data
• 18 million occurrences of user clicks from a Wiki page to another,  

collected from 1-year Web browsing logs

• 60/20/20 split for training/validation/evaluation



Automatic Highlighting Results: Baselines

• Random: Random baseline
• Basic Feat: Boosted decision tree learner with document features, such as 

anchor position, freq. of anchor, anchor density, etc.
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Automatic Highlighting Results: Semantic Features

• + LDA Vec: Basic + Topic model (LDA) vectors [Gamon+ 2013]

• + Wiki Cat: Basic + Wikipedia categories (do not apply to general documents)
• + DSSM Vec: Basic + DSSM vectors
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Contextual Entity Search: Settings

• Training/validation data: same as in automatic highlighting

• Evaluation data
• Sample 10k Web documents as the source documents

• Use named entities in the doc as query; retain up to 100 returned 
documents as target documents

• Manually label whether each target document is a good page 
describing the entity

• 870k labeled pairs in total

• Evaluation metric: NDCG and AUC



Contextual Entity Search Results: Baselines

• BM25: The classical document model in IR [Robertson+ 1994]

• BLTM: Bilingual Topic Model [Gao+ 2011]
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Contextual Entity Search Results: DSSM

• DSSM-bow: DSSM without convolutional layer and max-pooling structure

• DSSM outperforms classic doc model and state-of-the-art topic model
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Conclusions

• Modeling interestingness for recommendation –
What interests a user when she is reading a doc?

• Deep Semantic Similarity Model (DSSM)
• Semantic: map texts to feature vectors in a latent semantic space that is 

language independent

• Deep: the mapping is performed via deep neural network models that are 
optimized using a task-specific objective

• Best results in modeling interestingness (and other NLP tasks)

• Future work
• Improve DSSM by incorporating more structure information

• Apply DSSM to more applications
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